Supernatural Analogues of Beilinson Monads
نویسنده
چکیده
We use supernatural bundles to build GL-equivariant resolutions supported on the diagonal of Pn × Pn, in a way that extends Beilinson’s resolution of the diagonal. We thus obtain results about supernatural bundles that largely parallel known results about exceptional collections. We apply this construction to Boij–Söderberg decompositions of cohomology tables of vector bundles, yielding a proof of concept for the idea that those positive rational decompositions should admit meaningful categorifications.
منابع مشابه
Leibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study
Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...
متن کاملThe Rigid Analytical Regulator and K2 of Drinfeld Modular Curves
We evaluate a rigid analytical analogue of the Beilinson-Bloch-Deligne regulator on certain explicit elements in the K2 of Drinfeld modular curves, constructed from analogues of modular units, and relate its value to special values of L-series using the Rankin-Selberg method.
متن کاملFamilial 2-functors and Parametric Right Adjoints
We define and study familial 2-functors primarily with a view to the development of the 2-categorical approach to operads of [Weber, 2005]. Also included in this paper is a result in which the well-known characterisation of a category as a simplicial set via the Segal condition, is generalised to a result about nice monads on cocomplete categories. Instances of this general result can be found ...
متن کاملApplications of the Kleisli and Eilenberg-Moore 2-adjunctions
In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...
متن کاملMonads Need Not Be Endofunctors
We introduce a generalisation of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed λ-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions...
متن کامل